Detrital carbonate-rich sediments, northwestern Labrador Sea: Implications for ice-sheet dynamics and iceberg rafting (Heinrich) events in the North Atlantic

Geology ◽  
1992 ◽  
Vol 20 (12) ◽  
pp. 1087 ◽  
Author(s):  
J. T. Andrews ◽  
K. Tedesco
1994 ◽  
Vol 41 (1) ◽  
pp. 26-34 ◽  
Author(s):  
John T. Andrews ◽  
Helmut Erlenkeuser ◽  
Katherine Tedesco ◽  
Ali E. Aksu ◽  
A.J.Timothy Jull

AbstractTwo major meltwater events are documented in cores from the NW Labrador Sea. One occurred ca. 20,000 14C yr B.P. in association with deposition of a major detrital carbonate unit. Both prior to and after this event, δ18O values of near-surface planktonic foraminifera were 4.5%, indicating fully enriched glacial values. A younger event (ca. 14,000 14 C yr B.P.) is characterized by a dramatic change in δ18O from 4.5 to 2.0% and coincided with the retreat of ice from the outer SE Baffin Shelf, possibly into Hudson Strait. These meltwater events coincide with Heinrich (H) layers 1 and 2 from North Atlantic sediments. The 14,000 14C yr B.P. meltwater event indicates that the eastern margin of the Laurentide Ice Sheet also underwent rapid retreat at approximately the same time as other ice sheet margins around the NE North Atlantic. A third major detrital carbonate event at the base of HU87-033-009, possibly correlative with Heinrich layer 3, occurred ca. 33,960 ± 675 14 C yr B.P.; however, this is older than the accepted date for H-3 of 27,000 14C yr B.P. and may be H-4.


1994 ◽  
Vol 31 (1) ◽  
pp. 63-89 ◽  
Author(s):  
C. Hillaire-Marcel ◽  
A. de Vernal ◽  
G. Bilodeau ◽  
G. Wu

High-resolution stable-isotope and accelerator mass spectrometry 14C measurements in 25 box and piston cores from the Labrador Sea allow the reconstruction of major paleoceanographical changes during the last ~ 200 ka in this basin and also document the links between the interior of the Laurentide Ice Sheet and the North Atlantic Ocean during this interval. Two deep circulation regimes are indicated by contrasting sedimentation rates on the slopes: (i) the modern situation is characterized by a gyre of the North Atlantic Deep Water (NADW) components into the basin, which is responsible for the high-energy Western Boundary Undercurrent; this regime also prevailed during the former "true" interglacials and possibly during shorter "warm" intervals (e.g., Bølling-Allerød); (ii) a more frequent NADW-free situation during glacial and interstadial intervals is marked by the presence of a vertically homogeneous water mass in the basin. Sedimentological records also indicate that carbonate events (i.e., pulses of detrital Paleozoic carbonates from Hudson Strait) and Heinrich events (sharp increases in ice-rafted lithic fragments), which are observed during the last two glaciations, are due to two distinct mechanisms. We hypothesize that detrital-carbonate events are linked to the triggering of turbidity currents in the western Labrador Sea by surges of the ice margin off Hudson Strait, and that the North Atlantic Mid-Ocean Channel, and possibly the Charlie Gibbs Fracture Zone, played a role in the spreading of these carbonates into the North Atlantic. Rapid calving would have been responsible for the intense ice rafting responsible for the Heinrich events stricto sensu. During such intervals, low productivity in surface waters is inferred from light carbon events and low concentrations in primary productivity indicators.


2012 ◽  
Vol 27 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
I. Hernández-Almeida ◽  
F. J. Sierro ◽  
I. Cacho ◽  
J. A. Flores

2019 ◽  
Vol 15 (1) ◽  
pp. 153-168 ◽  
Author(s):  
Florian Andreas Ziemen ◽  
Marie-Luise Kapsch ◽  
Marlene Klockmann ◽  
Uwe Mikolajewicz

Abstract. Heinrich events are among the dominant modes of glacial climate variability. During these events, massive iceberg armadas were released by the Laurentide Ice Sheet and sailed across the Atlantic where they melted and released freshwater, as well as detritus, that formed characteristic layers on the seafloor. Heinrich events are known for cold climates in the North Atlantic region and global climate changes. We study these events in a fully coupled complex ice sheet–climate model with synchronous coupling between ice sheets and oceans. The ice discharges occur as an internal variability of the model with a recurrence period of 5 kyr, an event duration of 1–1.5 kyr, and a peak discharge rate of about 50 mSv, roughly consistent with reconstructions. The climate response shows a two-stage behavior, with freshwater release effects dominating the surge phase and ice sheet elevation effects dominating the post-surge phase. As a direct response to the freshwater discharge during the surge phase, deepwater formation in the North Atlantic decreases and the North Atlantic deepwater cell weakens by 3.5 Sv. With the reduced oceanic heat transport, the surface temperatures across the North Atlantic decrease, and the associated reduction in evaporation causes a drying in Europe. The ice discharge lowers the surface elevation in the Hudson Bay area and thus leads to increased precipitation and accelerated ice sheet regrowth in the post-surge phase. Furthermore, the jet stream widens to the north, which contributes to a weakening of the subpolar gyre and a continued cooling over Europe even after the ice discharge. This two-stage behavior can explain previously contradicting model results and understandings of Heinrich events.


2018 ◽  
Author(s):  
Florian Andreas Ziemen ◽  
Marie-Luise Kapsch ◽  
Marlene Klockmann ◽  
Uwe Mikolajewicz

Abstract. Heinrich events are among the dominant modes of glacial climate variability. During these events, massive iceberg armadas were released by the Laurentide Ice Sheet, sailed across the Atlantic, and caused large-scale climate changes. We study these events in a fully coupled complex ice sheet–climate model with synchronous coupling between ice sheets and oceans. The ice discharges occur as internal variability of the model with a recurrence period of 5 kyr, an event duration of 1–1.5 kyr, and a peak discharge rate of about 50 mSv, roughly consistent with reconstructions. The climate response shows a two-stage behavior, with freshwater release effects dominating the surge phase and ice-sheet elevation effects dominating in the post-surge phase. As a direct response to the freshwater discharge during the surge phase, the deepwater formation in the North Atlantic decreases and the North Atlantic deepwater cell weakens by 3.5 Sv. With the reduced oceanic heat transport, the surface temperatures across the North Atlantic decrease, and the associated reduction in evaporation causes a drying in Europe. The ice discharge lowers the surface elevation in the Hudson Bay area and thus leads to increased precipitation and accelerated ice sheet regrowth in the post-surge phase. Furthermore, the jet stream widens to the north and becomes more zonal. This contributes to a weakening of the subpolar gyre, and a continued cooling over Europe even after the ice discharge. This two-stage behavior can explain previously contradicting model results and understandings of Heinrich Events.


1998 ◽  
Vol 180 ◽  
pp. 163-167
Author(s):  
Antoon Kuijpers ◽  
Jørn Bo Jensen ◽  
Simon R . Troelstra ◽  
And shipboard scientific party of RV Professor Logachev and RV Dana

Direct interaction between the atmosphere and the deep ocean basins takes place today only in the Southern Ocean near the Antarctic continent and in the northern extremity of the North Atlantic Ocean, notably in the Norwegian–Greenland Sea and Labrador Sea. Cooling and evaporation cause surface waters in the latter region to become dense and sink. At depth, further mixing occurs with Arctic water masses from adjacent polar shelves. Export of these water masses from the Norwegian–Greenland Sea (Norwegian Sea Overflow Water) to the North Atlantic basin occurs via two major gateways, the Denmark Strait system and the Faeroe– Shetland Channel and Faeroe Bank Channel system (e.g. Dickson et al. 1990; Fig.1). Deep convection in the Labrador Sea produces intermediate waters (Labrador Sea Water), which spreads across the North Atlantic. Deep waters thus formed in the North Atlantic (North Atlantic Deep Water) constitute an essential component of a global ‘conveyor’ belt extending from the North Atlantic via the Southern and Indian Oceans to the Pacific. Water masses return as a (warm) surface water flow. In the North Atlantic this is the Gulf Stream and the relatively warm and saline North Atlantic Current. Numerous palaeo-oceanographic studies have indicated that climatic changes in the North Atlantic region are closely related to changes in surface circulation and in the production of North Atlantic Deep Water. Abrupt shut-down of the ocean-overturning and subsequently of the conveyor belt is believed to represent a potential explanation for rapid climate deterioration at high latitudes, such as those that caused the Quaternary ice ages. Here it should be noted, that significant changes in deep convection in Greenland waters have also recently occurred. While in the Greenland Sea deep water formation over the last decade has drastically decreased, a strong increase of deep convection has simultaneously been observed in the Labrador Sea (Sy et al. 1997).


2019 ◽  
Vol 60 (10) ◽  
pp. 1991-2024 ◽  
Author(s):  
M G Kopylova ◽  
E Tso ◽  
F Ma ◽  
J Liu ◽  
D G Pearson

Abstract We studied the petrography, mineralogy, thermobarometry and whole-rock chemistry of 120 peridotite and pyroxenite xenoliths collected from the 156–138 Ma Chidliak kimberlite province (Southern Baffin Island). Xenoliths from pipes CH-1, -6, -7 and -44 are divided into two garnet-bearing series, dunites–harzburgites–lherzolites and wehrlites–olivine pyroxenites. Both series show widely varying textures, from coarse to sheared, and textures of late formation of garnet and clinopyroxene. Some samples from the lherzolite series may contain spinel, whereas wehrlites may contain ilmenite. In CH-6, rare coarse samples of the lherzolite and wehrlite series were derived from P = 2·8 to 5·6 GPa, whereas predominant sheared and coarse samples of the lherzolite series coexist at P = 5·6–7·5 GPa. Kimberlites CH-1, -7, -44 sample mainly the deeper mantle, at P = 5·0–7·5 GPa, represented by coarse and sheared lherzolite and wehrlite series. The bulk of the pressure–temperature arrays defines a thermal state compatible with 35–39 mW m–2 surface heat flow, but a significant thermal disequilibrium was evident in the large isobaric thermal scatter, especially at depth, and in the low thermal gradients uncharacteristic of conduction. The whole-rock Si and Mg contents of the Chidliak xenoliths and their mineral chemistry reflect initial high levels of melt depletion typical of cratonic mantle and subsequent refertilization in Ca and Al. Unlike the more orthopyroxene-rich mantle of many other cratons, the Chidliak mantle is rich (∼83 vol%) in forsteritic olivine. We assign this to silicate–carbonate metasomatism, which triggered wehrlitization of the mantle. The Chidliak mantle resembles the Greenlandic part of the North Atlantic Craton, suggesting the former contiguous nature of their lithosphere before subsequent rifting into separate continental fragments. Another, more recent type of mantle metasomatism, which affected the Chidliak mantle, is characterized by elevated Ti in pyroxenes and garnet typical of all rock types from CH-1, -7 and -44. These metasomatic samples are largely absent from the CH-6 xenolith suite. The Ti imprint is most intense in xenoliths derived from depths equivalent to 5·5–6·5 GPa where it is associated with higher strain, the presence of sheared samples of the lherzolite series and higher temperatures varying isobarically by up to 200 °C. The horizontal scale of the thermal-metasomatic imprint is more ambiguous and could be as regional as tens of kilometers or as local as <1 km. The time-scale of this metasomatism relates to a conductive length-scale and could be as short as <1 Myr, shortly predating kimberlite formation. A complex protracted metasomatic history of the North Atlantic Craton reconstructed from Chidliak xenoliths matches emplacement patterns of deep CO2-rich and Ti-rich magmatism around the Labrador Sea prior to the craton rifting. The metasomatism may have played a pivotal role in thinning the North Atlantic Craton lithosphere adjacent to the Labrador Sea from ∼240 km in the Jurassic to ∼65 km in the Paleogene.


Sign in / Sign up

Export Citation Format

Share Document